Vertraulich

AT-UserGuide

Android-Treiber User Guide

Version 1.3
(13. September 2012)

Internal Document

Release Status:
DRAFT

© HID Global Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

Index

1 DOCUMENT INFORMATION 3
1.1 Change History 3
1.2 Distribution & Approval History 3
1.3 Related Documents 3

2 TERMS AND ABBREVIATIONS 4
3 PURPOSE OF THIS DOCUMENT 5
3.1 Structure of this document 5

4 MINIMUM SYSTEM REQUIREMENTS 6
4.1 Supported smart card readers 6
4.2 USB API test 6
4.3 Note on supported devices for USB smart card readers 6

5 INSTALLATION OF ANDROID PACKAGES (* . apk) 7
5.1 Installation via USB 7
5.1.1 Android SDK 7

5.1.2 USB drivers (Windows operating systems only) 7

5.1.3 USB debugging 8

5.2 Installation via HTTP 9
5.2.1 Allow installation of Android Apps from unknown sources __ 9

5.2.2 Uninstallation of installed Apps on the device 9

6 USAGE OF THE MANAGEMENT APP 10
6.1 USB readers 10
6.2 Bluetooth readers 10
6.2.1 Device discovery process 10

6.2.2 Bluetooth activation 11

6.2.3 Unpair paired Bluetooth devices 11

7 JSR268 API 12
7.1 Usage of the JSR268 API in individual Apps 12
7.2 Complete example Activity 13

8 INSTALLATION OF MANAGEMENT APP FROM WITHIN A THIRD-PARTY APP 15
8.1 Check installation status 15
8.2 Prepare Android package for installation 15
8.3 Package installation 16

© HID Global Page 2 of 16 Version: 1.3

AT-UserGuide — Android-Treiber User Guide

Internal Document

Vertraulich

1 Document Information

1.1 Change History

Version Date Author Description

1.0 29.08.2012 | HID Global Initial revision

1.1 04.09.2012 | HID Global Add notes on system requirements, setup of deve-
lopment environment, Android package creation

1.2 05.09.2012 | HID Global Add notes on Android package installation from
within another Android package

1.3 12.09.2012 | HID Global Adaptation of Bluetooth description due to storage
of MAC addresses in App preferences

1.2 Distribution & Approval History

Version Date distributed

Distributed to / approved by

Date approved

1.3 Related Documents

Abbrev Description

© HID Global
AT-UserGuide — Android-Treiber User Guide

Page 3 of 16 Version: 1.3

Internal Document

Vertraulich

2 Terms and Abbreviations

Abbrev Description

© HID Global Page 4 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

3 Purpose of this document

The Android-Treiber project aimed at providing usage of the OK 1021, 3021 and 2061 USB and Blu-
etooth smart card readers on the Android operating system. For this, a management App1 has been
implemented and the access to the smart cards is revealed via the well-known JSR268 API2,

This document describes the usage of smart cards and readers under the Android operating sys-
tem, using the aforementioned management App, as well as the smart card access via the JSR268
API.

3.1 Structure of this document

In Section 4, the minimum system requirements as well as a simple test if the Android device sup-
ports the correct USB mode is outlined. Section 5 describes the installation of Android Apps via the
Android package (* . apk) file. This installation process is shown via USB and via HTTP connection.
The next section highlights the usage of the management App, where USB and Bluetooth transmis-
sion is highlighted. In the final sections the JSR268 API, and an example App that uses the JSSR268
library to access card readers and smart cards, is exhibited, including the installation of the
management App from within the JSR268 example App.

1. Android application
2. http://jcp.org/aboutJava/communityprocess/final/jsr268/index.html

© HID Global Page 5 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

4 Minimum system requirements

In order to use the components described in this document, the following minimum system requi-
rements have to be met:

» Android device (tablet or smart phone) with Android operating system version 3.2 (Honey-
comb) or higher. This corresponds to Android API level 13 or higher.

» API support for android.hardware.usb.
» API support for android.bluetooth.

The Apps can be installed without special privileges, but the user may have to grant access to USB
devices and the Bluetooth stack during operation, if this is not already set.

4.1 Supported smart card readers

According to the project goals, the following USB and Bluetooth smart card readers are supported:

« OmniKey 1021 (USB),
« OmniKey 3021 (USB),
« OmniKey 2061 (Bluetooth).

4.2 USB APl test

To check whether the Android devices supports USB host (OTG1) mode, the USB device enumera-
tor, a free App from the Android Play Store, can be used, which can be installed directly via the Play

Store App or downloaded from the Play Store web pagez.

4.3 Note on supported devices for USB smart card readers

Basically all Android tables and smart phones which support the USB host (OTG) mode and the
Android API level 13 or higher are usable. However, not all devices may offer a USB port to fit the
USB Type A plug of the smart card readers. Please check what kind of adapter cables are needed
to properly connect the reader to the devices. Due to inconsistencies between device manu-
facturers, especially adapters from micro-USB to USB are not always compatible between different
vendors.

1. On-the-go, USB interface feature
2. https://play.google.com/store/apps/details?id=aws.apps.usbDeviceEnumerator

© HID Global Page 6 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

5 Installation of Android packages (* . apk)

To use to described features it is first necessary to install the package on the Android device. This
installation process encompasses the delivered management App (CardReaderManager.apk) as
well as third-party Apps that use the JSR268 library for card reader communication.

The installation can be done in two ways, via USB and via HTTP. This section will describe the steps
necessary to complete the installation for both variants.

5.1 Installation via USB

When installing Android packages via the USB connection, the following prerequesits have to be
met:

1. The Android SDK' has to be installed on the host operating system.
2. A USB driver for the device has to be installed (Windows operating systems only).

3. USB debugging has to be enabled on the device.
5.1.1 Android SDK

Independent of the operating system used, the SDK for Android can be downloaded under http://
developer.android.com/sdk/index.html.

After installation, the SDK Manager can be used to install required packages. For package installa-
tion, the Android SDK Tools as well as the Android SDK Platform-tools have to be installed. Further,
at least one of the platforms supporting API level greater of equal to 13 shall be installed, which is
necessary for Android development. To enable specific APIs, like Fragment or AsyncTaskLoader,
the current version of the Android Support Library also has to be installed. For more information on
package installation via the SDK Manager, see http://developer.android.com/sdk/installing/adding-
packages.html and http://developer.android.com/tools/extras/support-library.html.

5.1.2 USB drivers (Windows operating systems only)

If the host operating system is Windows (XP, 7 or Vista), further USB drivers for the device are
necessary in order to be able to establish the device connection via adb. On the Android web page
(see http://developer.android.com/tools/extras/oem-usb.html), a table lists various vendors and links
to their support pages, where the drivers can be downloaded.

1. Software development kit

© HID Global Page 7 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

5.1.3 USB debugging

On the Android device itself, USB debugging has to be enabled so that the device accepts the adb
connection and grants the reception of commands like package removal and installation. The USB
debugging configuration option is found in different places under Android 3.2 and Android 4.x.

« Android 3.2: Navigate to Settings (e.g. via the Applications menu) and select Applications >
Development. In this menu, the USB debugging option can be enabled.

« Android 4.x: Navigate to Settings (e.g. via the Applications menu). Then an entry Developer
options, shown under the System heading, has to be selected, where the USB debugging
option can be found.

After the Android SDK and the tools and necessary USB drivers are installed and USB debugging is
activated on the device, the device can be plugged to the host via a USB device cable. The Android
device shall then be automatically detected, which can be verified via the adb tool that is part of the
tools installed via the SDK Manager.

In a console (Linux or Windows), navigate to the directory where the Android SDK has been
installed. The following example assumes a Windows operating system and the installation path to
be C:\Programme\Android\android-sdk. The adb tool is installed in the platform-tools
directory of the Android SDK. When called with the devices parameter, it shows all Android
devices that are currently connected via USB.

C:\> cd Programme\Android\android-sdk
C:\Programme\Android\android-sdk> cd platform-tools
C:\Programme\Android\android-sdk\platform-tools> adb.exe devices
List of devices attached

0149CCCF0501300B device

When the device is shown in the above output, the USB connection has been set up successfully
and Android packages can be installed and removed via adb. For this, the command line parame-
ters install and uninstall can be used. With install, the path to the *.apk file has to be
given while uninstall takes the fully-qualified package name, for example:

C:\Programme\Android\android-sdk\platform-tools> adb.exe install
“C:\Dokumente und Einstellungen\user\Eigene Dateien\app.apk”
860 KB/s (220167 bytes in 0.250s)
pkg: /data/local/tmp/app.apk
Success

C:\Programme\Android\android-sdk\platform-tools> adb.exe uninstall
com.example.app
Success

Once installed, the USB connected can be unplugged and the App can be used right away on the
Android device (see Section 6).

© HID Global Page 8 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

5.2 Installation via HTTP

If the Android package that shall be installed is provided on a mirror with HTTP access, another
installation option is to directly download and install the package on the Android device. Therefore,
no USB connection is necessary for this procedure, but the following prerequesits have to be met:

1. The Android device must have access to the HTTP server where the Android package(s) are
located.

2. The user has to allow the installation of Android Apps that are not coming from the Android
Play Store

5.2.1 Allow installation of Android Apps from unknown sources

Normally, Android Apps are installed via the Android Play Store, where the packages that are provi-
ded passed certain security criteria. Therefore the security policy of Android intends to have to user
explicitly allow the installation from unknown sources. The appropriate configuration option is found
in different places under Android 3.2 and Android 4.x.

« Android 3.2: Navigate to Settings (e.g. via the Applications menu) and select Applications. In
this menu, the Unknown sources option can be enabled.

« Android 4.x: Navigate to Settings (e.g. via the Applications menu). Then an entry Security,
shown under the Personal heading, has to be selected, where the Unknown sources option
can be found under the heading Device administration.

Once the unknown sources option is enabled, the * . apk can be downloaded and installed easily.
First download the Android package with the the browser. By default, Android downloads its files to
a certain directory whose contents can be listed via the Downloads menu, which is found under the
Applications menu in both, Android 3.2 and Android 4.x.

The installation is started by clicking on the downloaded package in the Downloads menu. If the
package that shall be installed has already been installed before, a message is shown that
highlights this fact. In a next dialog the privileges are outlined that are claimed by the App to be
installed. After a click on the Install button, the Android App will be installed and can be used right
away (see Section 6).

5.2.2 Uninstallation of installed Apps on the device

Besides usage of adb (see Section 5.1), installed Apps can also be uninstalled directly on the
device.

« Android 3.2: Navigate to Settings (e.g. via the Applications menu) and select Applications. In
this menu, select Manage applications and switch to the Downloaded tab. On click of an App
from the list, a dialog shows up where the App can be uninstalled via the Uninstall button.

« Android 4.x: Navigate to Settings (e.g. via the Applications menu) and select Apps. From
there switch to the Downloaded tab. On click of an App from the list, a dialog shows up where
the App can be uninstalled via the Uninstall button.

© HID Global Page 9 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

6 Usage of the management App

Dependent on the actual reader type (USB or Bluetooth), there are small usage differences.

6.1 USB readers

When one of the two supported USB readers is plugged into the USB interface of the Android
device, a dialog and afterwards the management App appears. The dialog informs the user about
the plugged in USB device and whether the associated App shall be started, which has to be ans-
wered with OK. If the associated App shall be started by default, a checkbox can be checked and on
the next USB plug-in event the App will start automatically without the before-appearing dialog.
Then the management App shows a list of currently managed devices, where the newly attached
device shall be included. If not, a click on the Refresh button at the right corner of the App screen
will reload the reader list.

Further reader information (name, activity and usage status) are shown when clicking on a reader
name from the list. This screen is also used to activate or deactivate a reader. For example, if mul-
tiple readers are attached to a device, but the user only wants to expose some of them to applica-
tions via the JSR268 interface, those which shall not be propagated can be deactivated in the
reader information screen.

6.2 Bluetooth readers

Once a Bluetooth reader has been used for the first time with the management App (i.e. it has been
discovered and paired with the Android device, see Section 6.2.1), its MAC address is stored in the
App preferences. If Bluetooth is enabled on the Android device, the management App reads its
preferences on startup and adds all those Bluetooth devices to the list of available readers, whose
MAC addresses are found in the App preferences and likewise in the list of paired devices that is
fetched via the Android API. This way a Bluetooth reader is made available immediatly after startup
of the management App on the second and following usage, without the necessity of doing another
discovery process.

This procedure implies that listed Bluetooth readers might not be available all the time. As a conse-
quence, only for actual Bluetooth operations (i.e. data transmission), as well as for the discovery of
Bluetooth devices (see Section 6.2.1), at least one applicable Bluetooth device (i.e. a OK 2061
reader) has to be near the Android device.

6.2.1 Device discovery process

To initiate the Bluetooth discovery process, the management App provides a Bluetooth discovery
button at the right corner of the screen. Once clicked, Android will ask the user if Bluetooth shall
really be activated (if it is not yet activated on the device) and afterwards the Bluetooth device disco-
very process starts. This process lasts about 10-15 seconds and at the end either provides a list of
names of found peripheral devices or a message telling that no applicable devices have been disco-
vered.

If at least one applicable device has been discovered, a list is shown and the user has to choose the
device according to the MAC address and the name (if one is set for the device) in the list. After
clicking on the desired entry in the list, the pairing process will be initiated, during which Android

© HID Global Page 10 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

asks for the Bluetooth PIN (if this is the first time the Bluetooth device and the Android device are
pairing). Afterwards, the management App adds the Bluetooth device to the list of readers and the
information screen can be invoked in the same way as described above for USB readers.

6.2.2 Bluetooth activation

By default Bluetooth might not be enabled on the Android device. It can be enabled in the following
way:

« By starting the management App and clicking the Bluetooth discovery button. As described
above, during this process Bluetooth is enabled on the device.

« Manually:

- Android 4.x: Navigate to Settings (e.g. via the Applications menu) and switch the button
next to Bluetooth from Off to On.

- Android 3.2: Navigate to Settings (e.g. via the Applications menu) and select Wireless and
Network. In this menu select Bluetooth settings and then click the Bluetooth (Turn on Blu-
etooth) button.

6.2.3 Unpair paired Bluetooth devices

Android stores the pairing information after initial pairing with a Bluetooth device. If for any reason
this pairing shall be deleted, this can be done in the following way:

« Android 3.2: Navigate to Seftings (e.g. via the Applications menu) and select Wireless and
Network. In this menu select Bluetooth settings, where a list of paired devices are shown.
From this list, for each device the pairing can be detached.

» Android 4.x: Navigate to Settings (e.g. via the Applications menu) and select Bluetooth. There
a list of paired devices are shown and from this list the pairing for each device can be
detached.

© HID Global Page 11 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

7 JSR268 API

Access to the readers and inserted smart cards is provided from the management tool to user Apps
via the public JSR268 API. This API provides several classes and methods for reader listing, card
presence detection as well as data transmission. It is thoroughly documented under http://
download.oracle.com/otndocs/jcp/jscio-4.0-fr-eval-oth-JSpec/.

7.1 Usage of the JSR268 API in individual Apps

As one main purpose of this project was to allow any App to access readers and smart cards via the
JSR268 API, besides management and testing Apps a library (as Jar' file) is provided which encap-

sulates the JSR268 interface and can be included by any App to access the readers and smart
cards via the management tool.

If Android development, either with or without the Eclipse framework, is set up according to http://
developer.android.com/sdk/installing/index.html, the following steps are necessary in order to
successfully use the JSR268 APl in a new App (the delivered Jar file is called
jsr268library.jar in the following how-to).

1. Copy the Jar file to the 1ibs folder of the Android project (via Windows Explorer).

2. Using the Eclipse framework:
(a) Right click on the project, select Properties.
(b) Select Java Build Path and activate the Libraries tab.
(c) Click the Add JARs button and choose the jsr268library.jar from the 1ibs folder.
(d) The library shall then be visible under the Referenced Libraries folder of the project.

3. Import the following two packages from the library:

import android.smartcardio.ipc.ICardService;
import android.smartcardio.ipc.CardService;

3. Add the following variables to your Activity:

private ICardService mService;
private TerminalFactory mFactory;

4. Initialize the CardService, e.g. in the Activity’s onCreate method. The CardService will bind
to the management tool (backend) automatically.

For the initialization, the CardService needs the current object to be passed as the application
context:

mService = CardService.getInstance(this) ;

5. The CardService object shall also be told to release the binding at the end of an operation,
e.g. in the Activity’s onDestroy method:

1. Java archive

© HID Global Page 12 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

@Override

public void onDestroy ()
super.onDestroy () ;
mService.releaseService () ;

}

6. After initializing the CardService, the TerminalFactory can also be initialized. This object is the
actual entry point for the JSR268 API methods and classes.

mFactory = mService.getTerminalFactory() ;
7. The TerminalFactory object is actually an object of a subclass of javax.smartcar-

dio.TerminalFactory. Therefore the operation then is confined to using the JSR268 API
according to its documentation.

A simple example, taken from the official JSR268 documentation’, may look like this:

List<CardTerminal> terminals = mFactory.terminals () .list();
// Get the first terminal and establish a card connection.
CardTerminal terminal 1 = terminals.get (0);

Card card = terminal 1.connect (“T=0") ;

CardChannel channel = card.getBasicChannel () ;

// Send a command to the card and receive the response.
byte[] command = { 0x00, O0xA4, 0x00, 0x0C, 0x02, O0x3F, 0x00 };

ResponseAPDU response = channel.transmit (new CommandAPDU (command)) ;
// Interpret response, do further work.
//

// At the end, release card connection.
card.disconnect (true) ;

Note that all CardService operations may throw an exception, as documented in the JSR268 API.
Therefore the above example code shall be embedded in a try-catch block.

7.2 Complete example Activity

The following example uses the management tool (backend) to interact with readers and smart
cards and incorporates the card communication mentioned above.

import android.smartcardio.ipc.ICardService;
import android.smartcardio.ipc.CardService;

import android.os.Bundle;
import android.app.Activity;
import android.util.Log;
import android.view.View;

1. see for example http://docs.oracle.com/javase/6/docs/jre/api/security/smartcardio/spec/javax/smartcardio/
package-summary.html, or the downloadable documentation mentioned above

© HID Global Page 13 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

import android.smartcardio.Card;

import android.smartcardio.CardChannel;
import android.smartcardio.CardException;
import android.smartcardio.CardTerminal;
import android.smartcardio.CommandAPDU;
import android.smartcardio.ResponseAPDU;
import android.smartcardio.TerminalFactory;

public class MainActivity extends Activity f{

}

private ICardService mService;
private TerminalFactory mFactory;

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

mService = CardService.getInstance(this);

}

@Override

public void onDestroy ()
super .onDestroy () ;
mService.releaseService () ;

}

// Here, the card communication is initiated with a Button click.
public void onClick (View view) {
try {
if (mFactory == null) {
mFactory = mService.getTerminalFactory () ;

}

List<CardTerminal> terminals = mFactory.terminals().list () ;
// Get the first terminal and establish a card connection.
CardTerminal terminal 1 = terminals.get(0);

Card card = terminal 1.connect (“T=0") ;

CardChannel channel = card.getBasicChannel () ;

// Send a command to the card and receive the response.
byte[] command = { 0x00, 0xA4, 0x00, 0x0C, 0x02, O0x3F, 0x00 };
ResponseAPDU response = channel.transmit (
new CommandAPDU (command)) ;
// Interpret response, do further work.
//
// At the end, release card connection.
card.disconnect (true) ;
} catch (CardException e) {
//
}

}

© HID Global Page 14 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

8 Installation of management App from within a third-party App

When a third-party App using the JSSR268 API is implemented which attempts to interact with card
readers and smart cards, it is also useful to only have to install one *.apk (the one for the third-
party App), which automatically installs the management App on the first startup (if not already
installed).

In order to accomplish this task, a few things have to be kept in mind:

1. Copy the management App’s * . apk file (e.g. CardReaderManager . apk) to the assets
folder of the Android App project (via Windows Explorer),

2. check whether the management App is already installed,
3. copy the * . apk file from the assets folder to an external storage (e.g. cache),

4. install the * . apk and check if the installation was successful.

Further the card service connection to the management App (i.e. backend), whose setup is
described under list item 4. of Section 7.1, has either to be initialized at App startup or after the
management App has been installed. Otherwise no connection is established and the JSSR268 API
calls will fail, as the library would guess that there is no backend available.

8.1 Check installation status

The current installation status of an application can be queried using the PackageManager class
and the full-qualified package name of the desired application.

try {
PackageManager pm = getPackageManager () ;

pm.getPackageInfo (“com.sample.app”, PackageManager.GET ACTIVITIES) ;
// Bpp already installed.

} catch (PackageManger.NameNotFoundException e) {
// App not yet installed.

}

8.2 Prepare Android package for installation

Unfortunately, Android does not support the installation of packages directly from the assets folder
of an * . apk. This means that the * . apk file has to be copied from the assets folder to an external
storage, for example the external cache directory.

In order to copy the *.apk file to your App needs the permission to write to the external storage.
This permission can be claimed in the AndroidManifest .xml file via an entry

<uses-permission
android:name="android.permission.WRITE EXTERNAL STORAGE” />

which has to be included directly as child-tag of the <manifest> tag.

© HID Global Page 15 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

Vertraulich

The following example assumes that the *.apk file in the assets folder is called
CardReaderManager . apk.

// Copy the .apk file from the assets directory to the external

// cache.

File temp = File.createTempFile (“CardReaderManager”, “apk”,
getExternalCacheDir()) ;

temp.setWriteable (true) ;

FileOutputStream out = new FileOutputStream(temp) ;

InputStream in = getResources () .getAssets () .open (

“CardReaderManager.apk”) ;
byte[] buffer = new byte[1024];
int bytes = 0;

while ((bytes = in.read(buffer)) != -1) {
out.write (buffer, 0, bytes);

1

in.close () ;

out.close () ;
// This path is important for the following installation.
String cachePath = temp.getPath() ;

8.3 Package installation

Once prepared, the package installation is an easy and straightforward task which calls a
predefined Android App that handles the installation procedure. The only information necessary is
the path to the *.apk file which has to be installed, which has been stored in the cachePath
variable in the above example.

Intent intent = new Intent (Intent.ACTION VIEW) ;
intent.setDataAndType (Uri.fromFile (new File (cachePath)),

“application/vnd.android.package-archive”) ;
startActivity(intent) ;

This above code prompts the user with a dialog that asks whether the App shall be installed and
also lists the permissions needed by this App.

© HID Global Page 16 of 16 Version: 1.3
AT-UserGuide — Android-Treiber User Guide Internal Document

	1 Document Information
	1.1 Change History
	1.2 Distribution & Approval History
	1.3 Related Documents

	2 Terms and Abbreviations
	3 Purpose of this document
	3.1 Structure of this document

	4 Minimum system requirements
	4.1 Supported smart card readers
	4.2 USB API test
	4.3 Note on supported devices for USB smart card readers

	5 Installation of Android packages (*.apk)
	5.1 Installation via USB
	5.1.1 Android SDK
	5.1.2 USB drivers (Windows operating systems only)
	5.1.3 USB debugging

	5.2 Installation via HTTP
	5.2.1 Allow installation of Android Apps from unknown sources
	5.2.2 Uninstallation of installed Apps on the device

	6 Usage of the management App
	6.1 USB readers
	6.2 Bluetooth readers
	6.2.1 Device discovery process
	6.2.2 Bluetooth activation
	6.2.3 Unpair paired Bluetooth devices

	7 JSR268 API
	7.1 Usage of the JSR268 API in individual Apps
	7.2 Complete example Activity

	8 Installation of management App from within a third-party App
	8.1 Check installation status
	8.2 Prepare Android package for installation
	8.3 Package installation

